
Doctoral School on Engineering Sciences
Università Politecnica delle Marche

Extended summary

Formal Methods for

Service Oriented Software Engineering

Curriculum: Ingegneria Informatica, Gestionale e dell'Automazione

Author

Emanuele Glorio

Tutor(s)

Prof. Luca Spalazzi

Date: 30-01-2013

Abstract. Service-Oriented Computing is becoming more and more important. The prolifer­
ation of grid and cloud computing is increasing this trend. As a result, more companies
than ever before are exposing their Web services on the Internet. This fact has the effect of
transforming the web from a repository of data to a repository of service [1]. In this scen­
ario, a software engineer is called to design a software taking into account the
opportunity/need of reusing existing services. This requires two issues: - a software engin­
eering methodology that starts from business goals and organization of a given company
and arrives to identify which parts can be delegated to external services; - the capability of
locating the “most” appropriate services. In fact, while technology and standards, such as
Web services, are important, it has been widely recognized that they are not sufficient on
their own. Instead, a systematic and comprehensive approach is of critical importance, tak­
ing into account the business requirements and following recommended practices. For this
reason, even if there are many service-oriented methodology nowadays, Service-Oriented
Software Engineering (SOSE) is still an open field. In this thesis we present the definition of
a new SOSE methodology. As start, we use Tropos early phases because it is an agent-ori ­
ented methodology which bears particular attention to stakeholder needs and requirements

Doctoral School on Engineering Sciences
Università Politecnica delle Marche

analysis. Besides, Tropos was already refined in order to support web service design. We
leave the first three phases unchanged (Early and Late Requirements, Architectural Design)
and we focus on the final phases (Detailed Design and Implementation). In Detailed Design
phase we propose a mapping between i* concepts and BPMN 2.0 elements in order to
translate automatically the i* diagram derived from the previous phases in a workflow lan­
guage. Moreover we provide formal methods and techniques to select code and services in
order to reuse them inside the to-be application. Finally, in Implementation phase we pro­
pose a mapping BPMN - Alan (an agent-object oriented programming language) to produce
automatically an executable application. We present a case study from e-commerce and we
use it to show how to apply our methodology step by step.

Keywords. Formal methods, Service-oriented software engineering, Agent-oriented soft­
ware engineering, Service selection

Emanuele Glorio
Formal Methods for Service Oriented Software Engineering

1 Problem statement and objectives

A number of SOA methodologies such as IBM RUP/SOMA, SOAF, SOUP, etc.
have been proposed to ensure successful SOA development. IBM RUP/SOMA [2] is
an integrated methodology developed by IBM in a will to bring unique aspects of
SOMA to RUP. However, because SOMA is a proprietary methodology of IBM, its
full specification is not available. Service Oriented Architecture Framework (SOAF)
[3] methodology aim is to ease the service identification, definition and realization
activities by combining a top-down modeling of an existing business process with a
bottom-up analysis of existing applications. The methodology by Papazoglou [4] is
SOA development methodology that covers a full SOA lifecycle. It is partly based on
well-established development methodologies as RUP, Component-based Develop­
ment and BPM. The methodology by Thomas Erl [5, 6] is a step by step guide
through the two main phases: service-oriented analysis and design. Service-oriented
Unified Process [7] or SOUP is a hybrid software engineering methodology that is
targeted at SOA projects and is primarily based on the Rational Unified Process. In
the BPMN to BPEL [8] methodology the business process is expressed in an abstract
model (BPMN) and according to transformation rules it is automatically mapped to
an execution language (BPEL) that can be executed by a process engine. Even consid­
ering the specific characteristics of services during design, most of the proposal meth­
ods do not provide specific approaches for the requirements engineering phase. The
analyzed SOA methodologies are built upon and incorporate existing and proven
techniques, notations such as OOAD (Object-Oriented Analysis and Design), CBD
(Component-Based Development), BPM (Business Process Management), WSDL,
BPEL, UML. However, the service paradigm introduces unique requirements that
should be addressed by innovative techniques. For this reason we introduce also a re­
quirements-driven methodology, called Tropos[citare] that comes from agent-ori­
ented software engineering but fits for our purpose. Tropos is a well known software
development methodology which is founded on the i* [9] organizational modeling
framework. i* offers concepts such as actor (actor can be agents, positions or roles), as
well as social dependencies among actors, including goal, softgoal, task and resource
dependencies. Tropos has five phases: Early requirements, Late requirements, Archi­
tectural Design, Detailed Design, Implementation. Tropos framework has been re­
lated to different application areas, including requirements engineering, software pro­
cesses, and business process reengineering. In particular has been extended also for ser­
vice engineering ([10, 11, 12, 13]). In these works, however, the Tropos methodology
is used for the early phases of the service design and is not complete. In fact, they
only describe the business organization (intentional aspects of the problem) but do
not address the workflow description. They directly derive from intentional aspects
the capacities that services must have.

2 Research planning and activities

From our point of view, the current SOSE methodologies lack in several aspects,
namely:

Doctoral School on Engineering Sciences 1

Emanuele Glorio
Formal Methods for Service Oriented Software Engineering

• Even if it is widely recognized the importance of deriving a SOA design from
business needs, no methodology covers both preliminary and detailed design
phases. Most of the proposed methodologies focus on architecture and com­
ponent design (e.g. IBM RUP/SOMA, SOAF, SOUP, etc.) and do not deepen
how the business and organizational model can be derived by requirements.
Some methodologies (e.g. Tropos) focus on the preliminary phases but do not
deepen how services can be identified, selected, and composed.

• Even if formal methods have been widely used into the web service reserach
area, usually they are not integrated in a clear and well defined software engin­
eering methodology. Most of the works usually focus on the specific problem
they try to solve, e.g. selection, composition, and so on.

For these reasons we decided to create a new methodology:
• Concerning the early stages of the service candidate identification (i.e. the cre­

ation of the business model) we decided to adopt Tropos that uses i* as model­
ling language

• Regarding the final stage of the service candidate identification we use BPMN
2.0. We provide a mapping to switch automatically from i * to BPMN in or­
der to create the service model from business model. We have chosen BPMN
as modelling language because it is a standard as well as it is more understand­
able than for example UML. In this way the design validation phase continues
even after the early stages where the designer uses i*. In fact, since the BPMN
is understandable to the stakeholders they can continue to follow the design.

• Concerning the stage of implementation we provide the designer with the pos­
sibility of using directly a programming language (Alan) showing an auto­
mated mapping BPMN-Alan. Moreover we allow to use code and services
already existing through a mechanism of automatic selection. The designer can
use a high-level language such as BPMN to easily create a specification, a fac­
simile to what he or she wants to obtain. In this way, is provided the ability to
reuse code already written (by himself/herself or by others) or invoke external
services to delegate entire operations.

The main advantages of our methodology are:
• We derive a workflow from intentional aspects, and we allow the designer to

modify and complete it
• We use semantic annotation to ease interoperability
• We give the opportunity to identify services and then select them automatic­

ally. We perform the identification process manually and in this work we do
not examine it in depth because there are works [14, 15] that perform this
automatically.

• We give the opportunity to perform service composition

3 Analysis and discussion of main results

In this Section we show in detail our methodology (see Figure 1). Since we used the
first three phases of Tropos that are already formalized in [10, 11, 12], we do not ex­
plain them. Instead we go into detail of the four and five phase (Detailed Design and
Implementation).

Doctoral School on Engineering Sciences 2

Emanuele Glorio
Formal Methods for Service Oriented Software Engineering

3.1 Detailed Design

The Detailed Design phase consists in four sub-phases: i* to BPMN Mapping, BPMN
Detail, Service & Code Selection and lastly Composition.

3.1.1 i* to BPMN 2.0 Mapping

As mentioned before, we decided to use BPMN language to represent actor commu­
nications and actor behaviors at Detailed Design phase. Hence the first step of this
phase is to convert the i* diagram of the previous phase into a BPMN diagram. We
created a mapping between the i* constructs and the BPMN 2.0 elements, so it is pos­
sible to do the translation in a automatic way. In Table 1 we show our mapping.

3.1.2 Detail BPMN

The first automated step generates a BPMN skeleton with all the concepts and ele­
ments that are present in i* Architectural Design graph. As expected, this skeleton
may be not directly executable or even directly translatable into a programming lan­
guage. So, in this second step the designer has to refine the diagram in order to make
it complete and eventually runnable. The operations he should perform are:

• detail the content of each plan in order to make them runnable

Doctoral School on Engineering Sciences 3

Emanuele Glorio
Formal Methods for Service Oriented Software Engineering

Table 1. i* - BPMN 2.0 Mapping

i* concept BPMN 2.0 element
 Actor Pool
 HardGoal Start and End Event
 Main HardGoal Start and End Event inside a Lane
 Plan Sub-Process
 HardGoal AND Decomposition Parallel Gateway
 HardGoal OR Decomposition Exclusive Gateway
 Task AND Decomposition Parallel Gateway
 Task OR Decomposition Exclusive Gateway
 Means-End Sub-Process linked to Events
 Resource Data Object
 Goal dependency Message flow between Events
 Task dependency Message flow between Event and Sub-Process
 Task dependency with external Role Service Task

• finish off the rest of BPMN diagram:

◦ he could transform the existing elements in more specialized elements (e.g
transform a simple gateway in a event-based or databased gateway)

◦ transform an AND-gateway in a sequence

◦ and eventually he could add more BPMN elements like other events, tasks,
gateways and messages.

One of the operations that the designer has to perform in this step is to particularize
the content of each sub-process. A sub-process corresponds to an i* plan, hence it has
to contain all the atomic actions required to achieve the corresponding plan. We focus
in particular on this operation because it is the most important for our methodology.
In fact, as shown before, our work aims at helping the designer in this particular oper­
ation providing an automated support. In our methodology the designer do not have
to specify every single action that will be present in the final plan, but only the ones
that are meaningful to him. In other words, the designer specifies the only things he
know about how the plan should work. In this way he puts very little effort into par­
ticularizing the agent’s plan, however with our system he can achieve the same result
as a traditional and more laborious way. The designer starts with the almost empty
sub-process created in the previous step, containing only a start event, an end event
and a simple task as placeholder. Inside the sub-process he can add other BPMN ele­
ments, like gateways, tasks, events to create a model of the process he has in mind. As
the designer adds elements in the sub-process, he has to semantically annotate them,
but with a drag-and drop visual operation the annotation is very simple and user-
friendly. All that is necessary because our framework is based on semantics to per­
form selection.

3.1.3 Service & Code Selection

As a result of the previous step, for each plan the designer decided to detail in BPMN
we have an annotated process. For these plans, he chose to benefit of our automated

Doctoral School on Engineering Sciences 4

Emanuele Glorio
Formal Methods for Service Oriented Software Engineering

selection system, instead of implement directly them. Every single process represents
the designer’s requirement of how the respective plan should work. Therefore, in this
step we perform the actual selection process. In a few words, we provide a framework
in which the annotated BPMN is translated into a temporal logic formula and used to
check if there is a similar process into a repository of processes. Our methodology
provides two different kinds of selection: local and remote selection. In the local selec­
tion our framework search for possible matches in a local repository of source code.
This is the case when the designer want to reuse some existing code and paste it in the
system instead of rewriting it. On the other hand, in the remote selection the search
is done in a remote repository of web services. In this case our framework will find a
web service that can be invoke remotely, with no need of copy and paste some code
into the designer’s code. It is up to the designer to choose which selection to use, and
the choice must be made in the previous phase (i.e. Architectural Design phase). If the
designer wants to find a remote service he has to create in the first place an external
role in his system and then a Task Dependency involving this role as dependee. Con­
sequently our mapping creates in BPMN a Service task associated with a message to a
subprocess in which the designer details his requirements. After the selection is com­
plete our framework set the parameters of the selected web service to the Service Task
that is responsible to invoke it and ignore the subprocess that is no longer needed. In
all the other cases (i.e. task inside the system and Task Dependency with an internal
actor) our framework performs local selection.

3.1.4 Composition

In this last step we have to compose the processes (i.e. code or services) selected previ­
ously. After the selection step, our system replace the annotated BPMN used for re­
quirement with the retrieved code or service. This is an automated process, and it is
not enough. In fact, the several services obtained must be composed in order to work
properly. This composition is possible manually by the designer or automated with
traditional planning techniques. It is also possible that in this step we do not have any
results from the previous selection process, because there are no services (or code) that
fulfill his/her requirements. In this case the designer has to refine the workflow in or­
der to change or simply relax the specifications. To do that, the designer goes back to
the second step, refines the annotated BPMN and repeats the selection. This iteration
ends when all the requirements are fulfilled and it is possibile to start the implementa­
tion phase.

3.2 Implementation

First of all, we want to point out that BPMN 2.0 is an executable language so, in prin­
ciple, the diagram obtained from the design phase can be execute directly in a BPMN
engine. Since the BPMN stays at an high level and in many cases this is not enough, it
is often necessary to use a real programming language. We decided to use Alan as pro­
gramming language because it is a language that combine both agent-oriented and ob­
ject-oriented programming. Moreover, Alan is great to translate business and social
elements to programming concepts, helping us to reduce the semantic gap between
the final system and its operational environment. In Table 2 we present the mapping
between BPMN elements and Alan classes. The mapping i*-Alan has already been
formalized in [16] and we used it to create our translation in Alan.

Doctoral School on Engineering Sciences 5

Emanuele Glorio
Formal Methods for Service Oriented Software Engineering

Table 2. BPMN 2.0 – Alan Mapping

BPMN 2.0 element Alan class
 Pool Alan agent
 Lane We translate only the content of the Lane

 and not the Lane itself
 Event Desire
 Sub-Process Plan
 Data Object Belief
 Parallel gateway outside Sub-Processes Desire ANDlist
 Exclusive gateway outside Sub-Processes Desire ORlist
 Message flow between Pools Message exchange between Alan agents
 Service Task Plan with Java code inside planbody()
 Data Object Association Belief inside Alan class
 Text Annotation Comment
 Normal sequence flow of Activity Sequential operations
 Split Exclusive Gateway if/else if/else conditional statement
 Split Parallel Gateway Threading
 Join Exclusive Gateway Conditional statement
 Loop while statement
 Exception Flow try/catch statement

4 Conclusions

In this work we have presented the definition of a new SOSE methodology. We have
shown the motivation behind the creation of it and the importance of a new well
defined and formally founded methodology. As start, we used Tropos early phases be­
cause it is an agent-oriented methodology which bears particular attention to stake­
holder needs and requirements analysis. Besides, Tropos was already refined in order
to support web service design ([10, 11, 12, 13]). Since we wanted to have a complete
methodology and the previous work with Tropos were incomplete regarding the fi­
nal phases, we decided to create this new methodology based on Tropos. We have left
the first three phases unchanged (Early and Late Requirements, Architectural Design)
and we have focused on the final phases (Detailed Design and Implementation). In
Detailed Design phase we have proposed a mapping between i* concepts and BPMN
2.0 elements in order to translate automatically the i* diagram derived from the previ­
ous phases in a workflow language. Moreover we have provided formal methods and
techniques to select code and services in order to reuse them inside the to-be applica­
tion. Finally, in Implementation phase we have proposed a mapping BPMN - Alan to
produce automatically an executable application. We have presented a case study
from e-commerce and we have used it to show how to apply our methodology step
by step. About future work, our methodology should be tested on a large set of real
cases in order to validate it. In fact, meanwhile the selection process has been already
extensively tested, the whole methodology process is new and untested. Besides, it
should be created an integrated framework for our methodology, since currently
there are a lot of separated tools doing everyone a part of the process.

Doctoral School on Engineering Sciences 6

Emanuele Glorio
Formal Methods for Service Oriented Software Engineering

References

[1] Qi Yu and Athman Bouguettaya, “Guest editorial: Special section on query models
and efficient selection of web services”, Services Computing, IEEE Transactions on, vol. 3,
no. 3, pp. 161 –162, july-sept. 2010.

[2] P. Kruchten, The Rational Unified Process: An Introduction, The Addison-Wesley
Object Technology Series. Addison-Wesley, 2004.

[3] Abdelkarim Erradi, Sriram Anand, and Naveen N. Kulkarni, “Soaf: An architec­
tural framework for service definition and realization”, in IEEE SCC, 2006, pp. 151–158.

[4] M.P. Papazoglou and W.J. Van Den Heuvel, “Service-oriented design and develop­
ment methodology”, International Journal of Web Engineering and Technology, vol. 2,
no. 4, pp. 412–442, 2006.

[5] Thomas Erl, Service-Oriented Architecture: Concepts, Technology, and Design, Pren­
tice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[6] Thomas Erl, SOA Principles of Service Design (The Prentice Hall Service-Oriented
Computing Series from Thomas Erl), Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2007.

[7] Kunal Mittal, “Service Oriented Unified Process (SOUP)”. Available from:
http://www.kunalmittal.com/html/soup.html

[8] C. Emig, J. Weisser, and S. Abeck, “Development of soa-based software systems - an
evolutionary programming approach”, in International Conference on Internet and Web
Applications and Services/Advanced International Conference on, feb. 2006, p. 182.

[9] E. Yu, Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis, De­
partment of Computer Science, University of Toronto, Toronto, Canada, 1995.

[10] Loris Penserini, Anna Perini, Angelo Susi, and John Mylopoulos, “From stake­
holder intentions to software agent implementations”, in Advanced Information Systems
Engineering, Eric Dubois and Klaus Pohl, Eds., vol.4001 of Lecture Notes in Computer
Science, pp. 465–479. Springer Berlin Heidelberg, 2006.

[11] Diana Lau and John Mylopoulos, “Designing web services with tropos”, in Pro­
ceedings of the IEEE International Conference on Web Services, Washington, DC,
USA, 2004, ICWS ’04, pp. 306–, IEEE Computer Society.

[12] Amy Lo and Eric Yu, “From business models to service-oriented design: a reference
catalog approach”, in Proceedings of the 26th international conference on Conceptual
modeling, Berlin, Heidelberg, 2007, ER’07, pp. 87–101, Springer-Verlag.

[13] Marco Aiello and Paolo Giorgini, “Applying the tropos methodology for analysing
web services requirements and reasoning about qualities of services”, 2004.

[14] Devis Bianchini, Cinzia Cappiello, Valeria De Antonellis, and Barbara Pernici,
“P2s: A methodology to enable inter-organizational process design through web services”, in
CAiSE, 2009, pp. 334–348.

[15] Devis Bianchini, Francesco Pagliarecci, and Luca Spalazzi, “From service identi­
fication to service selection: An interleaved perspective”, in Formal Modeling: Actors,
Open Systems, Biological Systems, 2011, pp. 223–240.

[16] L. Spalazzi F. Pagliarecci, L. Penserini, “A Goal-Oriented Framework to cope with
Requirements Changes: Tropos & Alan”, International Transaction on Systems Science
and Applications, vol. 4, no. 4, pp. 367–381, December 2008.

Doctoral School on Engineering Sciences 7

